NASA TECHNICAL NOTE ### **NASA TN D-4061** NASA TN D-4061 | GPO PRICE \$CFSTI PRICE(S) \$ | _ | |-------------------------------|---| | Microfiche (MF) | _ | | eu. | N 47 - 31539 | | |----------|-------------------------------|------------| | FORM 602 | (ACCESSION NUMBER) | (THRU) | | <u> </u> | (PAGES) | (CODE) | | ACILI | (1 2017) | 32 | | 2 | (NASA CR OR TMX OR AD NUMBER) | (CATEGORY) | EFFECT OF INITIAL LOADS AND OF MODERATELY ELEVATED TEMPERATURE ON THE ROOM-TEMPERATURE FATIGUE LIFE OF Ti-8Al-1Mo-1V TITANIUM-ALLOY SHEET by L. A. Imig Langley Research Center Langley Station, Hampton, Va. ## EFFECT OF INITIAL LOADS AND OF MODERATELY ELEVATED TEMPERATURE ON THE ROOM-TEMPERATURE FATIGUE LIFE OF Ti-8Al-1Mo-1V TITANIUM-ALLOY SHEET By L. A. Imig Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ### EFFECT OF INITIAL LOADS AND OF MODERATELY ELEVATED TEMPERATURE ON THE ROOM-TEMPERATURE FATIGUE LIFE OF Ti-8Al-1Mo-1V TITANIUM-ALLOY SHEET* By L. A. Imig Langley Research Center ### **SUMMARY** The effect of high initial tensile or compressive loads and exposures up to 30 days at 300° and 550° F (422° and 561° K) on the room-temperature fatigue life of notched Ti-8Al-1Mo-1V titanium-alloy sheet was investigated. A high initial tensile load caused an increase in fatigue life and a high initial compressive load caused a decrease. Calculations showed that the tensile load caused compressive residual stress (which increased fatigue life) and that the compressive load caused tensile residual stress (which decreased fatigue life). Short duration exposure to elevated temperature caused a decrease in fatigue life. Longer exposures did not cause further reductions in fatigue life. ### INTRODUCTION The flight loadings encountered by an airplane may cause residual stresses in the airplane skin at points of stress concentration. It is generally accepted (refs. 1 to 6) that compressive residual stress in such areas provides a beneficial effect on fatigue life. Some of the investigations indicated that compressive residual stress provided an increase in fatigue life for prototype structures. (See refs. 1 to 3.) Others showed similar results for the effects of compressive residual stress on fatigue life for simple specimens (refs. 4 to 6). These previous investigations were conducted at laboratory ambient temperature. However, projected airplanes to be flown at speeds in the Mach 2 to Mach 3 range will experience moderately elevated temperatures on large areas of the skin. Therefore, ^{*}The information presented herein includes information from a thesis entitled "The Effect of Moderately Elevated Temperature on the Fatigue Lives of Notched ($K_T = 4$) Specimens Which Contain Residual Stress" offered in partial fulfillment of the requirements for the degree of Master of Science in Engineering Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, April 1966. it is of interest to anticipate the possibility of detrimental effects of the temperature on residual stress and on the fatigue life of the airplane. The current project was initiated to obtain information about the effect of moderately elevated temperature on the room-temperature fatigue life of specimens containing residual stress. Notched specimens, having a theoretical elastic stress-concentration factor of 4 and made of duplex-annealed Ti-8Al-1Mo-1V titanium-alloy sheet, were used. The investigation consisted of (1) determining changes in fatigue life due to application of the initial loads and (2) determining the effect of elevated temperature exposure on fatigue life of specimens similarly loaded initially. Exposures were at 300° and 550° F (422° and 561° K) and ranged up to 30 days. The units used for the physical quantities defined in the tables and figures are given in both the U.S. Customary Units and in the International System of Units (SI). Factors relating the two systems (ref. 7) are given in appendix A. Throughout the paper, U.S. Customary Units will be followed parenthetically by SI Units. ### MATERIAL AND SPECIMENS ### Material The material used in this investigation was 0.050-inch-thick (1.27-mm) Ti-8Al-1Mo-1V titanium-alloy sheet in the duplex-annealed condition. The duplex-annealing procedure consisted of heating to 1450° F (1061° K) for 8 hours, furnace cooling, heating to 1450° F (1061° K) for 15 minutes, and air cooling. Table I lists the longitudinal tensile properties and the chemical composition of the material. ### Specimens The configurations of test specimens are given in figure 1. The longitudinal axis of all specimens was parallel to the rolling direction of the sheet. The surfaces of the specimens were left as rolled. Figure 1(a) shows the tensile specimen and figure 1(b) shows the fatigue specimen. The notch has a theoretical elastic stress-concentration factor of 4 (that is, $K_T = 4$). The notch configuration simulates an ellipse as shown in the figure. The dimensions of the ellipse were determined by the procedure developed by McEvily, Illg, and Hardrath (ref. 8). The radius at each end of the notch was made by successively increasing the drill size by increments of 0.003 inch (0.076 mm) beginning with an 0.110-inch (2.79-mm) drill. The small burrs produced by the drilling operation were removed by holding the specimen lightly against a rotating rod composed of rubber impregnated with an abrasive. The deburring operation resulted in a slight bevel around the circumference of the ends of the notch. Figure 1.- Tensile and fatigue specimen configurations. Dimensions are in inches with millimeter equivalents in parentheses. ### TESTING EQUIPMENT AND EXPERIMENTAL PROCEDURE ### **Tensile Tests** Tensile tests were conducted in a universal testing machine with a 120-kip (530-kN) capacity. Stress-strain curves were obtained autographically by means of an x-y recorder. The electronic signal from a load cell in series with the specimen actuated the recorder drive for the stress axis. The strain axis was actuated by the output of an extensometer which incorporated a linear variable differential transformer. The extensometer was attached to the specimen in the reduced section and had a gage length of 1 inch (25.4 mm). The elongation in 2 inches (50.8 mm) was determined by measuring the distance, after fracture, between grid lines placed on each specimen prior to the test. ### Fatigue Tests Axial-load fatigue tests were conducted in a hydraulically actuated testing machine in which the loading was controlled through a closed-loop servosystem similar to that described in reference 9. A schematic diagram of the machine is shown in figure 2 and a photograph of the machine and electronic controls is presented as figure 3. An important feature of this equipment is that load amplitudes can be preset to allow accurate loading of specimens from the first cycle of the test. Load amplitudes are adjustable by means of the electronic signal from three variable resistors. Loading accuracy was verified during tests when a null indication was achieved on an oscilloscope in the readout balance system. The null was obtained when the difference between signals from the weighbar and a calibrated variable resistor in the readout system was zero. The accuracy of loading was estimated to be within ± 15 pounds (± 66 N) or ± 0.15 percent of capacity. For the present tests, a 10-kip (44-kN) capacity weighbar was used and the operating frequency was approximately 15 cycles per second. Figure 2.- Schematic diagram of hydraulically actuated closed-loop servo-controlled fatigue-testing machine. The fatigue tests were conducted at a constant-amplitude stress range of 0 to 50 ksi (0 to 345 MN/m^2) on the net section and loading was applied axially. Generally, five specimens were tested for each condition. The initial high tensile or compressive loads required to induce local residual stresses in the specimens were also applied in the fatigue machine. Guide plates were utilized on all specimens during compression loading in order to prevent specimen buckling. As the greatest effect of the initial loads on fatigue life was caused by high tensile loads, only the two highest tensile loads, 80 and 100 ksi (552 and 690 MN/m²) were used to determine elevatedtemperature effects. Specimens which had been initially loaded in tension were exposed up to 30 days at 70° , 300° , and 550° F (294° , 422° , and 561° K). The elevated temperatures are representative of the average structural temperatures anticipated during flight at Mach 2.2 and Mach 3, respectively. Figure 3.- Photograph of hydraulically actuated closed-loop servo-controlled fatigue-testing machine and control console. Specimens exposed for less than 20 hours were placed in a preheated apparatus of the type shown in figure 4 in which heating is accomplished by specimen contact with the carbon slabs. Specimens exposed for 20 hours or more were heated in an oven. A fan circulated the air inside the oven to provide a uniform temperature distribution. In either case, the desired temperature was maintained within $\pm 10^{\circ}$ F (5.5° K). After the desired exposure, specimens were reinstalled in the testing machine for the fatigue test. - A Specimen - B Carbon slabs - C Resistance heating elements - D Thermocouple temperature sensor - Pressure plate for use when furnace acts as guide plate - F Supporting frame Figure 4.- Apparatus used for short duration specimen heating. L-66-18.1 To evaluate the possibility that elevated temperature alone might have a detrimental effect on the material, another group of specimens was exposed to 550° F (561° K) for 30 days without having been subjected to initial loading. ### RESULTS AND DISCUSSION Data obtained during the investigation are tabulated in tables II, III, and IV and are shown in figures 5, 6, and 7. The symbols in the figures give the geometric mean fatigue life of the specimens for each test condition. The scatterband, indicated by the tick marks, indicates the maximum and minimum fatigue life for that test condition. Fatigue life data from specimens which did not fail within 10⁶ cycles were not included in the computation of geometric mean life. ### Effect of Initial Tensile and Compressive Loads The data shown in figure 5 were obtained by loading the specimens in tension or compression and subsequently testing them to failure in fatigue. The point plotted at zero stress gives the reference fatigue life. Fatigue lives much longer than the reference life were obtained from specimens which had experienced a large initial tensile load. The fatigue lives of specimens which had experienced an initial compressive load tended to be shorter than the reference life. (See table II.) A qualitative consideration of the residual stress at the notch due to application of the conditioning load provides a basis for explaining the results shown in figure 5 as Figure 5.- The effect of an initial tensile or compressive load on the fatigue life of notched (KT = 4) specimens of duplex-annealed Ti-8Al-1Mo-1V titanium-alloy sheet. Cyclic stress range: 0 to 50 ksi (0 to 345 MN/m²). follows: A tensile load which is large enough to cause yielding at the notch will produce a local compressive residual stress at the notch when the load is removed. (See ref. 10.) Subsequent application of a tensile load to the specimen containing the compressive residual stress would cause a lower local tensile stress than it would in an initially stress-free specimen. The reduced local stress is generally acknowledged as being responsible for the longer fatigue lives experienced by specimens initially loaded in tension. Figure 5 demonstrates that an increase in life by a factor of 10 was achieved for specimens conditioned at 100 ksi (690 MN/m²). By similar reasoning, initial compressive loads cause tensile residual stresses which result in a higher local stress than in initially stress-free specimens. As shown by figure 5, fatigue lives were reduced by compressive loading although the decrease is smaller than the increase due to tensile loading. ### Effect of Elevated-Temperature Exposure The data obtained from tests of specimens exposed to elevated temperature after tensile loading at 100 ksi (690 MN/m^2) are presented in figure 6 and in table III. The reference fatigue life (lower point) and the life after application of a 100-ksi (690- MN/m^2) stress (high point), corresponding to zero exposure time, are plotted at the left in Figure 6.- The effect of exposure to elevated temperature on the room-temperature fatigue life of notched (KT = 4) specimens of duplex-annealed Ti-8Al-1Mo-1V titanium-alloy sheet loaded at 100 ksi (690 MN/m²). Cyclic stress range: 0 to 50 ksi (0 to 345 MN/m²). figure 6. The three curves in the figures are identified by symbols according to the exposure temperature. The scatterbands for fatigue lives after 10 days and 30 days of exposure at 70° F (294° K) were approximately the same as that noted for specimens tested without exposure. (See fig. 6.) The fatigue lives dropped sharply, however, after only 20 seconds of exposure at 550° F (561° K). The lives obtained after exposures up to 30 days were approximately the same as for a 20-second exposure. The effect of temperature on fatigue life was not as pronounced for exposure at 300° F (422° K) as for exposure at 550° F (561° K) although the data show similar behavior. In neither case did the fatigue life diminish to the life before tensile loading. The heating apparatus used for the short exposures required 20 seconds to reach the control temperature. Therefore, the data in figure 6 for an exposure of 20 seconds were obtained from specimens which had just reached the desired temperature at the time they were removed from the heating apparatus. If residual compressive stresses are accepted as causing the beneficial effects on fatigue life discussed previously, the short exposure at elevated temperatures must have reduced the residual stresses substantially in order to cause such a significant change in fatigue life. Other tests (ref. 11) have shown that the tensile yield strength of the duplex-annealed Ti-8Al-1Mo-1V titanium alloy is 94 ksi (650 MN/m²) at 550° F (561° K) compared with 134 ksi (925 MN/m²) at room temperature. Thus, residual stresses which are greater than the elevated-temperature compressive yield stress and which are stable at room temperature would relax very quickly to approximately the elevated-temperature yield stress when the material is heated to 550° F (561° K). The fatigue life data for specimens which were exposed to 550° F (561° K) for 30 days without having been loaded initially are shown at the right of figure 6 and are given in table III. The reduction in life observed for these specimens is probably not significant because the data fall within the scatterband of lives for the reference condition. The effect of the elevated temperature exposure on the fatigue lives of specimens loaded at 80 ksi (552 MN/m^2) is shown in table IV and figure 7. Exposure at 70° F Figure 7.- The effect of exposure to elevated temperature on the room-temperature fatigue life of notched (KT = 4) specimens of duplex-annealed Ti-8AI-1Mo-1V titanium-alloy sheet loaded at 80 ksi (552 MN/m²). Cyclic stress range: 0 to 50 ksi (0 to 345 MN/m²). and 300° F (294° and 422° K) had practically no effect on fatigue life. For exposure at 550° F (561° K), a small decrease in fatigue life was observed. In this case, the decrease in fatigue life did not occur as rapidly as it had for the specimens conditioned at $100 \text{ ksi } (690 \text{ MN/m}^2)$. As will be discussed in the next section, the calculated residual stress resulting from loading at $80 \text{ ksi } (552 \text{ MN/m}^2)$ was considerably lower than that resulting from loading at $100 \text{ ksi } (690 \text{ MN/m}^2)$. Thus, a smaller reduction in residual stress could be expected from specimens loaded at $80 \text{ ksi } (552 \text{ MN/m}^2)$ when they were heated. Again, the fatigue lives did not reduce to the reference level. In an attempt to explain the reduction in fatigue life after exposure of initially loaded specimens to elevated temperature, photomicrographs ($\times 800$) were taken from samples of the notch-root material with and without exposure. The material for the exposed sample was from a specimen that had been loaded at 100 ksi (690 MN/m²) and exposed 30 days at 550° F (561° K). The other sample was from as-received material. No difference between the photomicrographs was observed. ### Calculations of Residual Stress Calculations of the residual stresses at the notch root due to initial loading were made to substantiate the viewpoint presented previously. The calculations were made by means of the method developed by Crews (ref. 10). In general, the procedure consists of determining the cyclic stress-strain curve and calculating stresses from it. For the present tests, the stress-strain curve was determined through one sequence of tensile loading, unloading, and reloading in compression and is presented as figure 8. To Figure 8.- Stress-strain curve for duplex-annealed Ti-8AI-1Mo-1V titanium-alloy sheet for tensile loading, unloading, and reloading in compression. facilitate application of Crews' approach, the following assumptions were made: (1) The virgin compressive stress-strain curve was identical to the virgin tensile stress-strain curve, (2) unloading portions of stress-strain curves were identical whether initial loading was tensile or compressive, and (3) the curvatures of unloading portions of stress-strain curves were identical regardless of the strain level achieved during the loading of the specimen. The calculated maximum and residual local stresses due to initial loading are presented in table V(a) and figure 9. As indicated by the figure, local residual Figure 9.- Calculated local stresses resulting from a single application of initial load to notched (KT = 4) specimens of duplex-annealed Ti-8Al-1Mo-1V titanium-alloy sheet. stresses were present only if the maximum local stress exceeded yield, and the residual stresses were opposite in sign to the applied loading. High maximum local stresses produced disproportionately large residual stresses upon unloading. To determine the local stresses occurring during the first cycle of the fatigue test, the change in local stress due to application of the fatigue loading was added algebraically to the residual stress already present due to the initial loading. The local stresses thus determined are presented in table V(b) and in figure 10. For initial tensile loading, the curve labeled "Minimum local stress" in figure 10 is the same as the curve labeled Figure 10.- Calculated local stresses during the first cycle of fatigue loading at 0 to 50 ksi (0 to 345 MN/m²) after an initial tensile load. Calculations are for notched (KT = 4) specimens of duplex-annealed Ti-8Al-1Mo-1V titanium-alloy sheet. "Residual local stress" in figure 9. Superposition of the calculated stress range due to the fatigue loading results in the curve labeled "Maximum local stress" in figure 10. The curve labeled "Mean local stress" is simply the arithmetic average of the other two curves. As seen in figure 10, initial tensile stresses greater than the maximum fatigue stress $\left[50 \text{ ksi } \left(345 \text{ MN/m}^2\right)\right]$ caused the local stresses to become increasingly negative as the magnitude of the initial stress increased. Calculations yield the same local stresses for the first cycle of the fatigue test for specimens not loaded initially and for those loaded at $50 \, \mathrm{ksi}$ (345 MN/m²) because $50 \, \mathrm{ksi}$ was the maximum stress in the fatigue test. For initial compressive loading, addition of the fatigue loading to the local tensile residual stress (fig. 9) caused yielding in tension. As a result of the tensile yielding, the local-stress range during fatigue was approximately the same as that for specimens which were not loaded initially. Thus, the calculations support the observed effects of initial loading on fatigue life presented in the previous sections of this paper and provide an explanation for the fatigue behavior presented in figure 5. ### CONCLUSIONS An investigation was conducted to study the effects of initial high loads and of exposure to moderately elevated temperatures on the room-temperature fatigue life of Ti-8Al-1Mo-1V titanium-alloy sheet. The results, which are based on tests of notched specimens having stress-concentration factors of 4 support the following conclusions: - 1. A large initial tensile load increased the fatigue life appreciably, whereas a large initial compressive load decreased the fatigue life somewhat. - 2. Exposures up to 30 days at 300° and 550° F (422° and 561° K) reduced the fatigue life after a high initial tensile load. The reduction was most pronounced at the higher temperature for the highest initial load. Most of the reduction occurred after only a short exposure in the case of the highest initial load. Exposure at 70° F (294° K) had no effect on fatigue life. - 3. The fatigue life of specimens subjected to an initial high tensile load did not reduce to the reference level of fatigue life after exposure at 300° or 550° F (422° or 561° K). 4. Calculations showed that an initial high tensile load induced local compressive residual stresses which increased the fatigue life. An initial high compressive load induced local tensile residual stresses which decreased the fatigue life. Langley Research Center, National Aeronautics and Space Administration, Langley Station, Hampton, Va., February 15, 1967, 126-14-03-06-23. ### APPENDIX A ### CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS The International System of Units (SI) was adopted by the Eleventh General Conference on Weights and Measures, Paris, October 1960, in Resolution No. 12 (ref. 7). Conversion factors for the units used herein are given in the following table: | Physical quantity | Physical quantity U.S. Customary Unit | | SI Unit
(**) | |-------------------|--|---|---| | Length | in. OF lbf ksi = $\frac{1000 \text{ lbf}}{\text{in}^2}$ | 0.0254 $\frac{5}{9} (F + 459.67)$ 4.448 6.895×10^{6} | meter (m) degrees Kelvin (^O K) newton (N) newtons/meter ² (N/m ²) | ^{*}Multiply value given in U.S. Customary Units by conversion factor to obtain equivalent value in SI Units or apply formula. ^{**}Prefixes to indicate multiples of units are as follows: | Prefix | Abbreviation | Value | |--------|--------------|-----------------| | milli | m | 10-3 | | kilo | k | 103 | | mega | M | 106 | | giga | G | 10 ⁹ | ### REFERENCES - 1. Heywood, R. B.: The Influence of Pre-Loading on the Fatigue Life of Aircraft Components and Structures. C.P. No. 232, Brit. A.R.C., 1956. - Ford, D. G.; and Payne, A. O.: Fatigue Characteristics of a Riveted 24S-T Aluminum Alloy Wing - Part IV. Analysis of Results. Rept. SM. 263, Aeron. Res. Lab., Australia Dept. Supply, Oct. 1958. - 3. Payne, A. O.; Ford, D. G.; Johnstone, W. W.; Kepert, J. L.; Patching, C. A.; and Rice, M. R.: Fatigue Characteristics of a Riveted 24S-T Aluminum Alloy Wing Part V. Discussion of Results and Conclusions. Rept. SM. 268, Aeron. Res. Lab., Australia Dept. Supply, June 1959. - 4. Rosenthal, D.; and Sines, G.: Effect of Residual Stress on the Fatigue Strength of Notched Specimens. Proc. Am. Soc. Testing Mater., vol. 51, 1951, pp. 593-610. - 5. Morrow, JoDean; and Sinclair, G. M.: Cycle-Dependent Stress Relaxation. Symposium on Basic Mechanisms of Fatigue, Spec. Tech. Publ. No. 237, Am. Soc. Testing Mater., 1958, pp. 83-109. - 6. Taira, Shuji; and Murakami, Yasunori: Residual Stresses Produced by Plastic Tension in Notched Plate Specimens and Fatigue Strength. Bull. JSME, vol. 4, no. 15, 1961, pp. 453-460. - 7. Mechtly, E. A.: The International System of Units Physical Constants and Conversion Factors. NASA SP-7012, 1964. - 8. McEvily, Arthur J., Jr.; Illg, Walter; and Hardrath, Herbert F.: Static Strength of Aluminum-Alloy Specimens Containing Fatigue Cracks. NACA TN 3816, 1956. - 9. Naumann, Eugene C.: Evaluation of the Influence of Load Randomization and of Ground-Air-Ground Cycles on Fatigue Life. NASA TN D-1584, 1964. - 10. Crews, John H., Jr.: Local Plastic Stresses in Sheet Aluminum-Alloy Specimens With Stress-Concentration Factor of 2 Under Constant-Amplitude Loading. NASA TN D-3152, 1965. - 11. Figge, I. E.: Residual Strength of Alloys Potentially Useful in Supersonic Aircraft. NASA TN D-2613, 1965. ### TABLE I.- TENSILE PROPERTIES AND CHEMICAL COMPOSITION OF DUPLEX-ANNEALED Ti-8Al-1Mo-1V TITANIUM-ALLOY SHEET 0.050 INCH (1.27 mm) THICK ### (a) Tensile properties (tabulations are averages of 16 tests) | Sheet | tensile | | stre
0.2- | ile yield
ngth at
percent
ffset | Elongation in
2 inches (51 mm),
percent | Young's n | nodulus | |-------|---------|----------|--------------|--|---|--------------------|-------------------| | | ksi | MN/m^2 | ksi | MN/m ² | Postonia | ksi | GN/m ² | | 29 | 144.9 | 999 | 132.1 | 911 | 13.0 | 16.7×10^3 | 115 | | 30 | 150.4 | 1037 | 136.9 | 944 | 12.5 | 17.2 | 119 | | 34 | 151.0 | 1041 | 136.9 | 944 | 12.7 | 16.9 | 116 | | 35 | 149.1 | 1028 | 135.3 | 933 | 12.3 | 16.6 | 114 | ### (b) Chemical composition supplied by manufacturer | Constituent | С | Fe | N | Al | v | Мо | Н | Ti | |----------------------|-------|------|-------|-----|-----|-----|----------------|---------| | Percentage by weight | 0.026 | 0.11 | 0.011 | 7.9 | 1.0 | 1.1 | 0.003 to 0.006 | Balance | ### TABLE II.- FATIGUE LIVES OF NOTCHED ($K_T = 4$) SPECIMENS OF DUPLEX-ANNEALED Ti-8Al-1Mo-1V TITANIUM-ALLOY SHEET 0.050 INCH (1.27 mm) THICK AFTER INITIAL LOADING [Cyclic stress range: 0 to 50 ksi $(0 \text{ to } 345 \text{ MN/m}^2)$] | Initia | d stress | Go a sima su | Fatigu | e life, cycles | | |--------|----------|--|--|----------------|--| | ksi | MN/m^2 | Specimen | Individual | Geometric mean | | | None | None | TC30A81
TC34A63
TC30A74
TC30A80
TC34A16
TC34A97
TC30A79
TC30A38 | 18 390
20 730
21 710
24 320
24 860
29 480
34 430
39 000 | 25 300 | | | 60 | 414 | TC30A42
TC30A24
TC30A1
TC30A37
TC30A49 | 20 290
26 360
28 660
34 020
35 500 | 28 280 | | | -60 | -414 | TC30A46
TC30A20
TC30A94
TC30A54
TC30A88 | 22 680
24 240
24 290
24 320
24 650 | 24 080 | | | 80 | 552 | TC30A29
TC30A45
TC30A30
TC30A19
TC30A64 | 37 250
38 250
47 280
48 390
54 090 | 44 590 | | | 100 | 690 | TC30A47
TC30A96
TC30A13
TC30A87
TC35A59
TC30A39
TC30A22
TC30A48
TC30A8 | 96 650
118 440
150 940
152 050
157 020
166 650
193 880
*>106
*>106 | 144 800 | | | -100 | -690 | TC30A70
TC30A83
TC30A23
TC30A17
TC30A71 | 14 860
15 700
15 910
16 520
18 500 | 16 250 | | ^{*}Not included in calculation of geometric mean fatigue life. # TABLE III.- FATIGUE LIVES OF NOTCHED ($K_T = 4$) SPECIMENS OF DUPLEX-ANNEALED Ti-8Al-1Mo-1V TITANIUM-ALLOY SHEET 0.050 INCH (1.27 mm) THICK AFTER INITIAL LOADING AT 100 ksi (690 MN/m²) AND EXPOSURE TO 70° , 300° , AND 550° F (294° , 422° , AND 561° K) Cyclic stress range: 0 to 50 ksi (0 to 345 MN/m^2) | | Exposure conditions | | | Fatigu | e life, cycles | | | |-------------|---------------------|---------------------|---|---|---|--------|--| | Temperature | | Duration min | Specimen | | | | | | oF | ο K | Duration, min | | Individual | Geometric mean | | | | 70 | 204 | 14 400
(10 days) | TC34A64
TC34A23
TC34A88
TC34A51
TC34A50 | 119 000
123 000
169 250
*>106
*>106 | 135 300 | | | | 70 : | 294 | 43 200
(30 days) | TC35A11
TC34A84
TC34A91
TC34A90
TC34A11 | 127 000
185 000
420 540
*>106
*>106 | 214 560 | | | | | | | 0.33
(20 sec) | TC37A71
TC37A75
TC37A58
TC37A38
TC37A27 | 51 270
61 930
63 630
88 790
341 130 | 90 600 | | | 800 | 400 | 60 | TC35A33
TC35A30
TC35A31
TC35A80
TC35A62 | 58 870
73 710
76 040
90 070
103 730 | 79 020 | | | | 300 | 422 | 14 400
(10 days) | TC34A12
TC34A46
TC34A45
TC34A56
TC34A47 | 73 130
83 500
102 260
105 580
125 760 | 96 340 | | | | | | | 43 200
(30 days) | TC34A80
TC34A17
TC34A95
TC34A72
TC34A10 | 61 360
72 770
75 300
79 020
117 350 | 79 220 | | ^{*}Not included in calculation of geometric mean fatigue life. ## TABLE III.- FATIGUE LIVES OF NOTCHED (K_T = 4) SPECIMENS OF DUPLEX-ANNEALED Ti-8Al-1Mo-1V TITANIUM-ALLOY SHEET 0.050 INCH (1.27 mm) THICK AFTER INITIAL LOADING AT 100 ksi (690 MN/m²) AND EXPOSURE TO 70° , 300° , AND 550° F (294° , 422° , AND 561° K) — Concluded | Exposure conditions Temperature | | | Entim | a life evelog | | | | | | | | | |----------------------------------|-----|---------------------|---|---|---|--|--|--|--------|--|--|--| | Temperature | | | Specimen | Fatigue life, cycles | | | | | | | | | | o _F | oK | Duration, min | | Individual | Geometric mean | | | | | | | | | • | | | 0.33
(20 sec) | TC29A7
TC29A17
TC29A66
TC29A4
TC29A80 | 28 130
54 570
59 410
64 110
85 670 | 54 950 | | | | | | | | | | 1 | TC35A83
TC35A93
TC35A75
TC35A94
TC35A7 | 58 410
66 160
66 840
67 480
74 990 | 66 570 | | | | | | | | | | | 60 | TC35A41
TC35A48
TC35A49
TC35A16
TC35A66 | 52 070
54 330
61 460
62 580
62 680 | 58 450 | | | | | | | | | | 561 | 50 561 | 0 561 | 360
(6 hours) | TC35A2
TC35A42
TC35A47
TC35A32
TC35A36
TC35A68 | 38 360
51 450
57 220
65 890
79 540
79 960 | 60 140 | | | | | | | 550 | | | | 561 | 561 | 1200
(20 hours) | TC34A70
TC34A31
TC35A26
TC34A96
TC34A62
TC34A13 | 56 550
56 610
60 680
64 770
68 730
88 430 | 65 150 | 14 400
(10 days) | TC30A32
TC30A41
TC30A51
TC30A92
TC34A61 | 37 410
44 850
45 390
48 760
50 550 | 45 150 | | | | | | | | | | | 43 200
(20 days) | TC30A33
TC30A43
TC30A55
TC30A14
TC30A72 | 39 330
40 610
41 200
43 290
45 820 | 41 990 | | | | | | | | | | | (30 days) | TC34A4
TC34A18
TC34A41
TC34A20
TC34A6 | 16 640
17 380
18 580
20 980
22 420 | *19 000 | | | | | | | | ^{*}The specimens in this group were subjected to 30 days of exposure at $550^{\rm O}$ F ($561^{\rm O}$ K) without having been loaded initially. ## TABLE IV.- FATIGUE LIVES OF NOTCHED ($K_T=4$) SPECIMENS OF DUPLEX-ANNEALED Ti-8Al-1Mo-1V TITANIUM-ALLOY SHEET 0.050 INCH (1.27 mm) THICK AFTER INITIAL LOADING AT 80 ksi (552 MN/m²) AND EXPOSURE TO 70°, 300°, AND 550° F (294°, 422°, AND 561° K) Cyclic stress range: 0 to 50 ksi (0 to 345 MN/m^2) | | Exposure of | conditions | | | | | | |----------------|-------------|---------------------|---|--|--|--|--------| | Temperature | | 5 4. | Specimen | Fatigue life, cycles | | | | | o _F | °K | Duration, min | : | Individual | Geometric mean | | | | 70 | 294 | 14 400
(10 days) | TC30A28
TC30A89
TC30A56
TC35A19
TC30A11 | 37 730
41 860
43 340
48 060
48 730 | 43 800 | | | | | 237 | 43 200
(30 days) | TC30A35
TC30A36
TC30A93
TC30A16
TC30A12 | 35 920
37 130
39 060
42 350
50 810 | 41 300 | | | | 300 | 200 | 422 | | 14 400
(10 days) | TC34A37
TC34A7
TC34A93
TC34A76
TC34A86 | 31 520
40 850
41 440
43 250
46 300 | 40 500 | | | 422 | | 43 200
(30 days) | TC34A87
TC34A43
TC34A58
TC34A81
TC34A40 | 35 330
41 740
43 640
47 030
49 880 | 43 000 | | | 550 561 | | 1 | TC37A67
TC35A64
TC37A44
TC35A44
TC35A8
TC37A97
TC37A56
TC35A34
TC35A5 | 31 990
37 320
37 890
38 450
38 560
38 720
41 620
42 020
42 090
53 290 | 40 000 | | | | | | 561 | 14 400
(10 days) | TC34A39
TC30A76
TC34A48
TC34A49
TC34A68 | 30 080
30 960
34 730
35 450
46 830 | 35 000 | | | | | | 43 200
(30 days) | TC34A53
TC34A52
TC34A44
TC34A24
TC34A89 | 29 540
30 170
30 510
30 890
32 890 | 30 700 | | ### TABLE V.- CALCULATED LOCAL STRESSES FOR NOTCHED ### $(K_T = 4)$ SPECIMENS OF DUPLEX-ANNEALED ### Ti-8Al-1Mo-1V TITANIUM-ALLOY SHEET 0.050 INCH (1.27 mm) THICK ### (a) Stresses associated with initial load | Initial stress | | 1 | | associated val load
(*) | with | |----------------|----------|------|----------|----------------------------|-------------| | | | Max | ximum | Res | sidual | | ksi | MN/m^2 | ksi | MN/m^2 | ksi | $ m MN/m^2$ | | 50 | 345 | 137 | 944 | -52 | -359 | | 60 | 414 | 139 | 958 | -75 | -517 | | 80 | 552 | 141 | 972 | -109 | -751 | | 100 | 690 | 146 | 1007 | -124 | -855 | | -60 | -414 | -139 | -958 | 75 | 517 | | -100 | -690 | -146 | -1007 | 124 | 855 | ### (b) Stresses occurring during first cycle | Initial stress | | Fir | rst-cycle local
with the fatig | stresses ass
ue-stress cyo
(*) | ociated
cle | | |----------------|----------|-----------|-----------------------------------|--------------------------------------|----------------|--| | | | Maximum 1 | | | inimum | | | ksi | MN/m^2 | ksi | MN/m^2 | ksi | MN/m^2 | | | 50 | 345 | 137 | 944 | -52 | -359 | | | 60 | 414 | 114 | 786 | -75 | -517 | | | 80 | 552 | 80 | 552 | -109 | -751 | | | 100 | 690 | 65 | 448 | -124 | -855 | | | -60 | -414 | 136 | 938 | -52 | -359 | | | -100 | -690 | 138 | 951 | -51 | -352 | | ^{*}Calculated using the method developed by Crews (ref. 10).